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OF HYDRODYNAMICS OF AN IDEAL FLUID WITH FREE SURFACES

G. A. Konstantinov and Yu. L. Yakomov

(Mos cow)

ABSTRACT. A method is proposed for the solution
concerning non-stationary axisymmetric potential
ideal incompressible fluid with a free surface. The method
is based on the discrete distribution of annular sources on
boundary surfaces, which involves the reduction of the pro-
blem in question to a system of ordinary differential
equations.

of problems
flow of an

An approximation method is described for the solution of problems in non-
stationary axisymmetric potential flow of an ideal incompressible fluid with
a free surface. The method is based on the discrete distribution of annular
sources on boundary surfaces which permits the problem under consideration to
be reduced to a system of ordinary differential equations. The basis of this
numerical method is the known result, in agreement with which any harmonic
function may be represented as the potential of sources distributed on a flow
boundary [1,2]. This work contains a numerical solution of the problem in
which the free surface will be the surface of a gas cavity.

1. The problem is considered of the location of the surface of a gas cavity
which is formed at the end of a round pipe protruding from an infinite wall.
The surface of the cavity is essentially non-stationary due to the pressure
difference in the pipe and in the surrounding fluid. The fluid is assumed to
‘be ideal, incompressible and quiescent at infinity. It is assumed that the
z axis coincides with the axis of flow symmetry and with the direction of the
‘force of gravity, and also that the infinite wall lies in the plane z = 0.
‘The presence of an infinite wall is equivalent to flow symmetry with respect
‘to this plane. (Figure 1).

The potential u of the fluid traveling speed

d 5 will be a function of cylindrical coordinates r, z

) and time t, where r is the distance to the axis of
P z symmetry. The function u(r, z, t) satisfies the
. 7 —f — Laplace equation in cylindrical coordinates for the

5 0 z ax1symmetrlca1 case j
5 ) u 1 0u O S
L P T Fal 1.1
= Figure 1

/16:



L

the rectangle method. Here

and with boundary conditions

du
wm=0 (1.2)

on the surface I of the pipe

du  p)--p, 1
ar+ —*‘*{;“—C—D Sy e (- gz =0 (1.3)
on free surface S. Here p(t) is pressure in the cavity; p_ is pressure at a

point infinitely removed from the axis of symmetry and which lies in the plane
z = 0; v(t) is the magnitude of the dlsplacement velocity of surface S; g

s, the value of the acceleration of gravity;-p-is fluid density.

In order to obtain the differential motion equations of the free surface
we employ the condition of potential flow

v o=z grad i

2. The boundary surfaces S and I with planes parallel to the plane z = 0
are laid out on the rings Sj (j = 0.1,...,N), which cover the surfaces S and Z.

From each surface Sj the circumference of radius R.(Z.) is taken, the poten-
tial of which has linear density Q The potentlal u(r z,t) at the point (R
Z. ) of the meridian half-plane zr 1s sought in the form of the sum of the
potentlals taken in’ this manner, of the circumferences with radii R , Situa-
fed on rings Si

N
umzqmpq——?hMWMthﬂmnﬁ (2.1)

=)

which is equivalent to an approximation of the surface potential of a simple

layer, which is the solution of equation (1.1}, and the final sum according to

big

— si{ry 2, 1) | Ry, Z5= S {{r*-+ R2—2r;co5u+t (2 — Zi)“-]"'/’—i—
i...u ’ 0. R . (2 ‘2)

— {2+ R —2rRycos G-} (2 Z)T 7y da [ Ry, %; (i=F7
oo e B gy

20;\ 2
s,(r,z, t)]R,,7,_.2n( C:J) _-—H—jln

tan%i { + g[zn,f-‘ (L—cos @) - (22;)*] Vda
: : 0,
in which equation (2.3) will be an approximation of the value of the potential

‘of ring Sj with unity density. This approximation is made in the following

:manner: ring Sj, by means of central angle 6 < aj < 2m (Figure 2) is divided

into two parts, and the potential of that part of the ring which is based on
angle aJ is replaced by the potentlal of the c1rcle w1th radlus pJ w1th
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center at point (Rj,Zj), tangent to the surface Sj at this point; the poten-

tial of the remaining part of the ring is replaced by the potential of the
arc of the circumference with radius Rj with central angle 27 - aj, which is

located on the ring. The radius pj of the circle is determined from require-
ments so that its area will be Zn/aj times less than the area Uj of the ring,

from which

p; == {a;0; [ 2a%) "%

Equation (2.3) is obtained by a limiting process from the equation for
the potential of the system of the circle and the arc of the circumference
chosen in this manner during the approach of arbitrary point (r,z) to point
(Rj,Zj), which is located on the surface Sj'

Keeping in mind that an exact solution for ring
potential does not depend on angle mj, which is in-

troduced only in order to obtain an approximate solu-
tion, we shall require that the derivative with respect
to aj from equation (2.3) equal 0. This leads to the

equation

Figure 2, which has a single root 0 < a, < 2w, if the following
relationship is fulfilled

v

0; < 4nRj (2.5)

Thus under conditions (2.3) the angle aj is uniquely determined from

~equation (2.4) as a function of coordinates Rj and Zj. In introducing the

;following designations:

i

|

-

:

|

b
i

L

. gi = Q:Ri, a® =r+ R+ (z—Z:)% ai* =12+ R+ (z-F Z:)?
oy L B
- . ki=7;§11 kt=gme, - f1(R) "—*:S(1 — kcosu)” *da
- 4]
- :
L3 jwe have |
- . NG 0 ) | B L,
- Si (ry 2, )[Ry, Zj=2 [—““"ii" -} —"E;—.L--]l Ry Z; (£f=7)
st 2a;\' R o; kst
. ©osi{ry s )] Rj,Zj=g [-r (6-}> ——TE‘]H ltan‘sz -+ Z%—):,

— % .
Vaj—~2-’-TRj I/-a—;— sin 75:: (2.4)
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and

N
w(ry z, )| R, 7; 2 - Z: () si(ry 5, )] R, 7 (2.6)

=20

(=01 ..., )

Similarly for the derivatives of potential u(r,z,t) we obtained the fol-
lowing equations according to the space variables r and z:

N

du - 08 I
3rlnizj”“—'gig‘dr[u z; (2.7)
AY
e e du t’)sz
Tz, = 2% % 2, (2.8)
! 1—-—0 '
= O,_i, eeey V)
where
Bs; s [f.fa (kg) — Rafs (Ba) | rfe (hi*) — Rifa (’t‘i’)“
or R z; a;? r a;*3 R, Z; (i)
. ds; 1 11 o Rilfe 5y — fa (i
5;’ P-J-.ZJ-__4“-~'— cos 9j -}- mlu ta_n—ll——?. s ;i).a [ (k7))
953 _ [(»-—21) /e (I‘z) (z-+29) [ (B )“
8{ R; 2 - a;® a;*3 R ;. 7; (i)
Os; 1 dzjfe (k5*)
i = 4&a% — sin B; — —r——mi-d
-0z Rj Z; oj n_J a;*3
L I . T ) .
T ()= S(l —kcos a)‘%da, S fa (k)= S cosa (I —kcos ay™ du
0 ) : 0 : )

Here ej is the angle between the z axis and the tangent at the point

;(Rj,Zj)-to the meridian section of the surface S and I, located in the sec-
Jiional plane.

- The fulflllment of the boundary condition (1.2) on the surface I is
40 equlvalent to the fulfillment of condition

— g 3 (Srijcrj + SZijch") =0 (=AM +'1’ ey N) (2 .9) :
i =0 . . .

-1n points (RJ ,Z.), where crj = cos (n,7), czj = cos (n,z) are direction co-

51nes of the external normal to the surface I at the point (R Z. ), Srij’
i521J are values of the functions 9s. /ar, 3s. /az at the same p01nt Designating
‘ the function u(r z t) at the p01nt (R Z. ) by u (t), we have



N
wj(t) = — a0 b M) (2.10)

i=0

The values qa; (t) (A =0,1,...,N) are determined from conditions (2.9),
(2. 10)

Considering the potential flow condition (1.4), the boundary condition
(1.3) as well as (2.10), and passing to dimensionless values

u z vy
2,

- r
=Ly W=pe S TE RET

we have the following system of ordinary differential équations:
1 4 |
H‘;r(r) @) () s (0 (=00 b, A
1-—«0
d"’ (T) — = e ll (T _> 14 ) QQ»J 'T (/' ==0, Lo M + 1)
dq; (¥) ApG) | L[(DE (7 } ars (=0, 1, . M
T VIC R <dr)_T<df) RS ) (2.11)
Here 3 ‘ 1 where ].=—‘ 0, '1, ey A b (T) 1 Where'izoa 13 « .oy M
. — J =4 R
a; ()= {__ ce; where = M + 1 j 16y where j . Af |- 1
sy} ds;
S4ij ()q lﬂ ne 31 = d¢ |
2L, Ap (0)\
AMﬂ=pm—mw b= %=(7rﬂ

‘L is a characteristic linear dimension.

o It is assumed that for j = M + 2,...,N ring sources on the surface I are
/distributed arbitrarily prov1ded that condition (2.9) is fulfilled. In this
work the values for quantities n (™), ; (T) for a case where the surface I is

Ty ! a pipe with length 7 # 0, are calculated from the relationship z

i" . N5 = Narss -+ 2"(‘"“‘/11
B U= baa b 20k, (G=MA4L, . W)

i

o . Ny — Mar+ o En—Carn ’

| =y | R=TT0w i

- | i
b Integration of the system (2.11) permits us to make an approximate de-

termination of surface S(t), and therefore also of potential ¢(n,z,T).

L

[ C M“i§
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3. The system (2.11) of ordinary differential equations was integrated by
the numerical Runge-Kutta method on an M-20 EVM [electronic computer] with
constant interval h with respect to dimensionless time 1, where it was as-
sumed that c,bj (0) =0 (j =0, 1,...,M) and g = 0. The initial values of the

free surface coordinates were established on a pipe shear plane z = L. A case
was examined for inertial expansion of a cavity under the influence of an
initial surplus pressure momentum, where

© (Ap(y where v<k
Ap (1) =
» (%) { 0 . where T-"
Here h = 0.1, Ap(0) = 1.02-10%, M = 8, N = 17, - 0, S = 1 (=

=M + 1,...,N), 1 = 2R (I,R are the length and radius of the pipe, respec-
tively). Based on numerical calculations Figure 3 shows a representation of
the change in cavity surface during the process of inertial expansion.

In order to compare the numerical solution

A 7 /»—\‘V’—'W' ' ] obtained with known exact solutions, a problem
”Z\" -, was examined concerning the expansion of a spheri-
: c</ 47 \ t\ . cal gas cavity in an unbounded fluid. Cases were
) N \ - examined involving cavity expansion with constant
ve‘\:f \g surplus pressure, inertial expansion, and harmonic

sure change law. In all of these cases the maximum

ﬁ g % i -vibrations of the cavity with an adiabatic pres-
2 z

¢ relative error in the calculation of free surface
» coordinates where M = N = 6, h > 0.02 did not
-~ Figure 3. exceed 3%. '
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